Linear Programming. ma Rawoof Shaik (IFos 30 + CSE 309) 2021
\rightarrow A set S is said to he convex if for any elements $x_{1}, x_{2} \in S$, $\lambda x_{2}+(1-\lambda) x_{1} \in S$ for $0 \leq \lambda \leq 1$.
\rightarrow Let S be a convex set. A point $x \in S$ is an extreme p t. of S if and only if there donot exist points $x_{1}, x_{2}\left(x_{1} \neq x_{2}\right)$ in the set S such that $x=\lambda x_{1}+(1-\lambda) x_{2}: 0<\lambda<1$.
\rightarrow A hyperplane in E^{n} is defined to be a set ' S ' of points $S=\left\{x \in E^{n}\right.$ / $\left.c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}=d\right\}$, i.e. $S=\left\{x \in E^{n} / C x=d\right\}$. $\}+$ divides En unto 3 mutually exclusive and exhaustive regions, $S_{1}=\{x: c x<d\}, S_{2}=\{x: c x=d\}$ $S_{3}=\{x: c x>d\}$. S_{1} and S_{3} are called open halfspaces. $S_{4}=\{x: C x \leq d\}$ and $S_{5}=\{x: C x \geqslant d\}$ are called closed half spaces. $A \operatorname{ls} \theta, S_{4} \cap S_{5}=S_{2}$.
\rightarrow Convex combination of pts $x_{1}, x_{2}, \ldots, x_{m}$ is $X=\sum_{i=1}^{m} \mu_{i} x_{i} ; \mu_{i} \geqslant 0$ where $\sum_{i=1}^{m} \mu_{i}=1$.
\rightarrow suppose set A is not convex. Then the smallest rover set which contains A is called the convex hull of A. i.e. it is the intersection of all convex sets which contain A.
(called convex polyhedron)
\rightarrow Convex hull of $p t s . x_{1}, x_{2}, \ldots, x_{m}$ is $S^{(\text {called }}=\left\{x \in E^{n} / X=\sum_{i=1}^{m} \mu_{i} x_{i}, \mu_{i} \geqslant 0, \sum_{i=1}^{m} \mu_{i}=1\right\}$.
\rightarrow Formulation of an LPP: Step $1=$ decision variables $x_{1}, x_{2}, \ldots, x_{n} ;$ step $2=$ formulate objective f_{n} as a linear $f_{n} ;$ step $3=$ formulate constraints; Δ top $4=$ Non negativity of X.
\rightarrow The 2 teckniefues of solving an LPP by graphical method are (i) corner point method: find coordinates of each vertex of feasible region and evaluate obj fr z ot each of them, (ii) Iso-profit/Iso-cost method: draw a line of the obi fur and move it around in the feasible region to find the optimal solution.
\rightarrow Canonical form: Maximize $z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$, sulyict to the centriants $a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \leq b_{i}: i=1,2, \ldots, m$, and $x_{1}, x_{2}, \ldots, x_{n} \geqslant 0$.
\rightarrow standard form: Mariunije (or Minimize) $z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$, subject to $a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n}=b_{i}: i=1,2, \ldots, m$, and $x_{1}, x_{2}, \ldots, x_{n} \geqslant 0$. Also, here $b_{i} \geqslant 0$.
\rightarrow An initial fersilule solution is obtain MA Rawoof Shaik (IFoS 30 + CSE 309) 2021 artificial variable equal to the RHS and all other variables as zero.
\rightarrow Matrix form of LPP in standard form: Max or Min $Z=C^{\top} X$, sulyect to $A X=B$ and $X \geqslant 0$. (where X is a column vector of unknowns). AlSO $B \geq 0$
\rightarrow Let B be any $m \times m$ sulmatrix of A.formed by m L.I. columns. Then solution obtained by setting $n-m$ variables not associated $w /$ columbic of B equal to sizer and solving the resulting system is called a balic solution X_{B}. B is called the basis and its columns are the basis vectors. $X_{B}=B^{-1} b$.
\rightarrow Basie feasible solution, is FS) that basie sole. which also satisfies non-ve restrictions.
\rightarrow If one or more of the basic variables is equal to zero, then the BFS is degenerate.
\rightarrow If all basic variables are +ie, the BFS is non-degenerate.
\rightarrow Total number of basic solutions $=n_{c m}$.
$\rightarrow A X=B$ in the vector form is $x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n}=b: A_{i}$ is col. of A.
\rightarrow Simplex Procedure: (1) Always Maximize obj fr and $b_{i} \geqslant 0$; (2) express problem in standard form; (3) Find an initial BFS (IBFS); (4) Apply optimality test, ie. if all $A_{j}=x_{j}-Z_{j}: Z_{j}=\sum C_{B} a_{j j}$ are -we, then IBFS is optimal. Otherwise go to next step; (5) Choose incoming variable as the as the one with max the C_{j} (if rare same, choose arbitrarily) and outgoing variable as the one with mixiunum ratio $\theta(\geqslant 0) ;(6)$ Make the incoming column as a part of basic columns using row operations; (1) \&o to step (4).
\rightarrow Big M method: (1) Express the problem in standard form; (2) Assigner ego. artificial variables with very large penalty ' $-M$ '; (3) Now solve by simplex (i) if no artificial variable, $A_{i}{ }^{(m}$ basis and optimality conditions satisfied, then OBFS is obtained, (ii) if at least one a_{i} in basis at gere level, then solution is degenerate OB ES (iii) if at least one a_{i} in basis at non-zero havel, then no feasible sole exists ($\begin{aligned} & \text { aka a pseudo) } \\ & \text { optimal sol.) }\end{aligned}$
\rightarrow Two Phase method: Phase I: (1) express LPP in standard form; (2) formulate artificial obj in $Z^{*}=-a_{1}-\alpha_{2} \ldots-a_{m}$; (3) Now solve by simplex method (i) Max $z^{*}<0$ \& at least on s artificial variable in optimal basis, then no feasible soln-exists, (ii) $M a x Z^{*}=0$ \& at least
 artificial variable out of the basis to obtain a BFS, (iii)' Max $Z^{*}=0$ and no artificial variable appears in optional basis, then BFS is obtained.
Phase II: The final simplex tableau of Phase I is taken as the initial simplex tableau of Phase II and the obj function is replaced by original obj in. zero, the simplex method fails. Then we use the degeneracy technique. To avid cycling (i) divide each element in the tied rows by the the coff f of the key column in that row. Compare resulting ratios (from lift to right) first of unit matrix and then of body matrix, column by column, (iii) The outgoing variable lies in the row which first contains the smallest algebraic ratio.
\rightarrow To construct dual problem, (1) Max in primal becomes this in dual and vie versa, $(2)(\leq)$ in primal becomes (\geqslant) in dual and vice versa, $(3) c_{1}, c_{2}, \ldots, c_{n}$ of primal become $b_{1}, b_{2},-b_{n}$ of anal and vice versa. (4) of premial has n variables $\& m$ constraints, then dual has m variables and n constraints, (5) variables in both are non-negative.
\rightarrow Whenever there is an equality constraint, the corresponding variable becomes unrestrained and vice versa. Thus we can make it non-negative in the LPP using $x_{1}=x_{1}^{\prime}-x_{1}^{\prime \prime}: x_{1}^{2}, x_{1}^{\prime \prime} 30$
\rightarrow Dual of the dual is the primal.
\rightarrow If the primal and dual have feasible solutions then both Lave optimal solutions and the optional value of the primal is equal to that of dual. (Duality theorem)
\rightarrow If primal has unbounded sols. then dual is infeasible and vice versa.
\rightarrow The optimal value of primal variable is given by the coefficient of the slack Variable ω /changed sign in the Δ_{j} row of the optimal dual simplex table \& vire versa
\rightarrow And in case of artificial variable, it is the coff in $A j$ row after deleting M.
\rightarrow Dual simplex method: (1) Convert the max problem into canonical form and add slack variables; (2) Find an IBS); (3) compute $\Delta_{j}=x_{j}-z_{j}$, (i) of all) $\Delta_{j} \leq 0$ \& $b_{i} \geqslant 0$, then OBFS is attained, (ii) If (ali) $S_{j} \leq 0$ and any $b_{i}<0$, then go to step 4 , (iii) if any $\Delta \Delta_{j}>0$, then the method fails; (4) Hark the outgoing variable first as the one that contains most re $b_{i} ;(5)$ if all ells in this now $\geqslant 0$, then no feasible sole.

(6) Iterate towards OBFS. Dual simplex : (infeasche, optimal) \rightarrow (feasible, optimal)
\rightarrow Primal Simplex: (feasible, non-optinal) \rightarrow (beasichleoptimal).
\rightarrow For a given $m \times n$ transportation problem (TP), A is $(m+n) \times m n$ matrix dits rank is $(m+h-1)$. Thus OBFS has at most $(m+n-1)$ the values. (rivera).
\rightarrow There are 3 methods to oletain an IBFS for a TP: (i) North-west Corner method, (ii) Least Cost or Matrix Minima method, (iii) Vogel's Approx method.
\rightarrow In NWC, start from the upper left corner and allocate to all cells accordin to the supply and demand, regardless of the transportation costs.
\rightarrow In LCM/MMM start transport with the cheapest route and use the routes in the ascending order of transportation costs.
\rightarrow In VAM, take differences b / w the \min and next to min transportation costs in each row \& each column, iteratively. In each iteration, choose the largest difference row/column, and allocate al much as porsitele to the lowest cost cell. In case of tie, allocate to the cell w/lower cost among them.
\rightarrow If a closed circuit involirng any basic cells can he formed, then they are in L.D positions. If no such circuit is possible, then they are in L.I positions
\rightarrow To identify the cells at zero lind in a degenerate solution: such a ell can be selected which doesnot form a closed circuit with any the other basic cells. \rightarrow (MoDi/u-v method)
\rightarrow TP Procedure: (1) find IBFS by NWCM or LCM or VAM; (2) assign \in or 0 appropriately if there is degeneracy; (3) solve $u_{i}+v_{j}=c_{i j}$ for basic cells $\omega / u_{i}=0$ or $v_{j}=0$ for a row/col. $\omega /$ max no of basic cells; (4) compute $\Delta_{i j}=u_{i}+v_{j}-c_{i j}$ for all non-basic cells; (5) If all $\Delta_{i j}>0$, then current BFS is optimal. Oherinse choose cvicoming cell w/largest $\Delta_{i j}>0$; (6) Allocate θ to chosen cell and identify a closed loop; Odd \& subtract a alternatively; ; 7) assign a max value of θ so that all variables are $\geqslant 0$; (8) Return to step (3) katill OBFS is obtained.
\rightarrow If the $T P$ is unbalanced, then add an artificial source/destination and solve it as a balancedone
\Rightarrow Assign the corr. costs as O and delete the artificial variables from the solution.
\rightarrow Assignment Problem: Min $z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}$
st. $\quad \sum_{i=1}^{m} x_{i j}=1 \quad(j=1,2, \ldots, n)$
$x_{i j}=0001$
$\sum_{j=1}^{n} x_{i j}=1 \quad(i=1,2, \ldots, m)$
$i=1,2, \ldots, m$
$i=1,2, \ldots, n$,
Scanned by CamScanner
 all elements of that row and column; (2) Cover all zeros with menimuen no. of horizontal and vertical lines, say γ. If $\gamma=n$, optimal assignment can he made it If $r<n$, go to step (3); (3) Price minimum element not covered by the lines and (i) subtract it from all uncovered elements (ii) add to all elements at intersection of 2 covering lines, f (iii) leave all other covered elements unchanged; (4) Make an optical assignment such that each now and each column has only one zero encircled; (5) Add all corresponding $x_{i j}$'s to obtain min imus costvalue.

